|
|
A159889
|
|
Numerator of Hermite(n, 16/23).
|
|
1
|
|
|
1, 32, -34, -68800, -2093684, 224163712, 18248827144, -839028775168, -161999734633840, 1917548044739072, 1603923010615074784, 31037878026343011328, -17673243900695263973696, -959600704244699318978560, 212370574074332282486900864, 21009464001651119352291258368
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..385
|
|
FORMULA
|
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 23^n * Hermite(n, 16/23).
E.g.f.: exp(32*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(32/23)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
EXAMPLE
|
Numerators of 1, 32/23, -34/529, -68800/12167, -2093684/279841..
|
|
MATHEMATICA
|
Numerator[Table[HermiteH[n, 16/23], {n, 0, 40}]] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
Table[23^n*HermiteH[n, 16/23], {n, 0, 30}] (* G. C. Greubel, Jul 11 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(polhermite(n, 16/23)) \\ Charles R Greathouse IV, Jan 29 2016
(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(32/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
|
|
CROSSREFS
|
Cf. A009967 (denominators)
Sequence in context: A029925 A074287 A223589 * A345490 A095481 A095475
Adjacent sequences: A159886 A159887 A159888 * A159890 A159891 A159892
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2009
|
|
STATUS
|
approved
|
|
|
|