Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 21 2024 10:21:30
%S 0,0,0,0,342675456,13153078605120,25637821631078400,
%T 9533380086713683200,1227485144606805073920,75547606881603808336896,
%U 2700027498853281914634240,63595142713108801675900800,1076856076493029796330188800,13952190527320266709190514240
%N Number of n-edge-colorings of the second Blanusa Snark.
%C The second Blanusa Snark is a cubic graph on 18 vertices and 27 edges with edge chromatic number 4.
%H Alois P. Heinz, <a href="/A159448/b159448.txt">Table of n, a(n) for n = 0..1000</a>
%H Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: <a href="http://dx.doi.org/10.1088/1367-2630/11/2/023001">10.1088/1367-2630/11/2/023001</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BlanusaSnarks.html">Blanusa Snarks</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeColoring.html">Edge Coloring</a>
%H <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (28, -378, 3276, -20475, 98280, -376740, 1184040, -3108105, 6906900, -13123110, 21474180, -30421755, 37442160, -40116600, 37442160, -30421755, 21474180, -13123110, 6906900, -3108105, 1184040, -376740, 98280, -20475, 3276, -378, 28, -1).
%F a(n) = n^27 -54*n^26 + ... (see Maple program).
%p a:= n-> n^27 -54*n^26 +1413*n^25 -23868*n^24 +292526*n^23 -2771853*n^22 +21128307*n^21 -133083282*n^20 +706103282*n^19 -3200482928*n^18 +12523602732*n^17 -42639446348*n^16 +127040507554*n^15 -332524010611*n^14 +766396617378*n^13 -1556509608394*n^12 +2783042514579*n^11 -4368658864218*n^10 +5990173216956*n^9 -7117375900060*n^8 +7240708340968*n^7 -6196441690112*n^6 +4345188866816*n^5 -2398700714304*n^4 +976694192256*n^3 -260203292160*n^2 +33894503424*n: seq(a(n), n=0..16);
%Y Cf. A159300.
%K nonn
%O 0,5
%A _Alois P. Heinz_, Apr 11 2009