login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159448
Number of n-edge-colorings of the second Blanusa Snark.
1
0, 0, 0, 0, 342675456, 13153078605120, 25637821631078400, 9533380086713683200, 1227485144606805073920, 75547606881603808336896, 2700027498853281914634240, 63595142713108801675900800, 1076856076493029796330188800, 13952190527320266709190514240
OFFSET
0,5
COMMENTS
The second Blanusa Snark is a cubic graph on 18 vertices and 27 edges with edge chromatic number 4.
LINKS
Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.
Eric Weisstein's World of Mathematics, Blanusa Snarks
Eric Weisstein's World of Mathematics, Edge Coloring
Index entries for linear recurrences with constant coefficients, signature (28, -378, 3276, -20475, 98280, -376740, 1184040, -3108105, 6906900, -13123110, 21474180, -30421755, 37442160, -40116600, 37442160, -30421755, 21474180, -13123110, 6906900, -3108105, 1184040, -376740, 98280, -20475, 3276, -378, 28, -1).
FORMULA
a(n) = n^27 -54*n^26 + ... (see Maple program).
MAPLE
a:= n-> n^27 -54*n^26 +1413*n^25 -23868*n^24 +292526*n^23 -2771853*n^22 +21128307*n^21 -133083282*n^20 +706103282*n^19 -3200482928*n^18 +12523602732*n^17 -42639446348*n^16 +127040507554*n^15 -332524010611*n^14 +766396617378*n^13 -1556509608394*n^12 +2783042514579*n^11 -4368658864218*n^10 +5990173216956*n^9 -7117375900060*n^8 +7240708340968*n^7 -6196441690112*n^6 +4345188866816*n^5 -2398700714304*n^4 +976694192256*n^3 -260203292160*n^2 +33894503424*n: seq(a(n), n=0..16);
CROSSREFS
Cf. A159300.
Sequence in context: A230085 A204337 A113739 * A316745 A351459 A358705
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 11 2009
STATUS
approved