|
|
A159231
|
|
Primes p such that 8*p^2-2*p-1 divides Fibonacci(p).
|
|
4
|
|
|
37, 97, 577, 727, 1297, 3037, 3067, 4447, 4567, 5557, 7507, 7867, 8647, 9067, 9157, 12967, 17257, 20107, 20407, 21787, 22147, 23677, 25447, 27817, 28687, 29347, 30187, 32587, 33487, 35617, 38377, 42157, 42667, 42967, 43207, 45697, 46447, 47497, 49477
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
Chris Caldwell, The Prime Glossary, Fibonacci number
C. K. Caldwell, "Top Twenty" page, Fibonacci cofactor
|
|
MATHEMATICA
|
Select[Prime@Range[5084], Mod[Fibonacci[#], 8*#^2 - 2*# - 1] == 0 &] (* Arkadiusz Wesolowski, Dec 12 2011 *)
|
|
PROG
|
(Magma) [p : p in PrimesUpTo(49477) | IsZero(Fibonacci(p) mod (8*p^2-2*p-1))] // Arkadiusz Wesolowski, Nov 09 2013
(PARI) forprime(p=2, 49477, if(Mod(fibonacci(p), 8*p^2-2*p-1)==0, print1(p, ", "))); \\ Arkadiusz Wesolowski, Nov 09 2013
|
|
CROSSREFS
|
Subsequence of A159259. Supersequence of A215158.
Cf. A000045, A023172, A159234, A181890.
Sequence in context: A256602 A142793 A139939 * A180518 A107999 A108160
Adjacent sequences: A159228 A159229 A159230 * A159232 A159233 A159234
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Arkadiusz Wesolowski, Apr 06 2009
|
|
STATUS
|
approved
|
|
|
|