login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159231
Primes p such that 8*p^2-2*p-1 divides Fibonacci(p).
4
37, 97, 577, 727, 1297, 3037, 3067, 4447, 4567, 5557, 7507, 7867, 8647, 9067, 9157, 12967, 17257, 20107, 20407, 21787, 22147, 23677, 25447, 27817, 28687, 29347, 30187, 32587, 33487, 35617, 38377, 42157, 42667, 42967, 43207, 45697, 46447, 47497, 49477
OFFSET
1,1
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
Chris Caldwell, The Prime Glossary, Fibonacci number
C. K. Caldwell, "Top Twenty" page, Fibonacci cofactor
MATHEMATICA
Select[Prime@Range[5084], Mod[Fibonacci[#], 8*#^2 - 2*# - 1] == 0 &] (* Arkadiusz Wesolowski, Dec 12 2011 *)
PROG
(Magma) [p : p in PrimesUpTo(49477) | IsZero(Fibonacci(p) mod (8*p^2-2*p-1))]; // Arkadiusz Wesolowski, Nov 09 2013
(PARI) forprime(p=2, 49477, if(Mod(fibonacci(p), 8*p^2-2*p-1)==0, print1(p, ", "))); \\ Arkadiusz Wesolowski, Nov 09 2013
CROSSREFS
Subsequence of A159259. Supersequence of A215158.
Sequence in context: A256602 A142793 A139939 * A180518 A107999 A108160
KEYWORD
nonn
AUTHOR
STATUS
approved