OFFSET
1,2
EXAMPLE
For n = 8 we have the following proper divisors of k <= n: {1}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1}, {1, 2, 4}. Only k = 6 has a proper divisor that is not a divisor of 8, viz. 3. Hence a(8) = 1 + 2 + 3 + 4 + 5 + 7 + 8 = 30.
PROG
(Magma) [ &+[ k: k in [1..n] | forall(t){ d: d in Divisors(k) | d eq k or d in Divisors(n) } ]: n in [1..57] ];
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 01 2009
EXTENSIONS
Edited and extended by Klaus Brockhaus, Apr 06 2009
STATUS
approved