login
A158974
a(n) is the number of numbers k <= n such that not all proper divisors of k are divisors of n.
3
0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 5, 1, 6, 5, 6, 6, 9, 6, 10, 7, 10, 11, 13, 7, 14, 14, 15, 14, 18, 12, 19, 16, 19, 20, 21, 16, 24, 23, 24, 20, 27, 22, 28, 25, 25, 29, 31, 23, 32, 30, 33, 32, 36, 31, 36, 32, 38, 39, 41, 31, 42, 41, 39, 40, 44, 41, 47, 44, 47, 43, 50, 40, 51, 50, 49, 50
OFFSET
1,7
LINKS
FORMULA
For primes p, a(p) = p - A036234(p) = p - A000720(p) - 1.
EXAMPLE
For n = 8 we have the following proper divisors for k <= n: {1}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1}, {1, 2, 4}. Only k = 6 has a proper divisor that is not a divisor of 8, viz. 3. Hence a(8) = 1.
MAPLE
f:= proc(n) local d;
d:= numtheory:-divisors(n);
nops(remove(t -> (numtheory:-divisors(t) minus {t}) subset d, [$4..n-1]))
end proc:
map(f, [$1..100]); # Robert Israel, Mar 30 2020
MATHEMATICA
a[n_] := Select[Most[Divisors[#]]& /@ Range[n], AnyTrue[#, !Divisible[n, #]&]&] // Length;
Array[a, 100] (* Jean-François Alcover, Jul 17 2020 *)
PROG
(Magma) [ #[ k: k in [1..n] | exists(t){ d: d in Divisors(k) | d ne k and d notin Divisors(n) } ]: n in [1..76] ];
(PARI) a(n) = my(dn = divisors(n)); sum(k=1, n, my(dk=setminus(divisors(k), Set(k))); #setintersect(dk, dn) != #dk); \\ Michel Marcus, Aug 27 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 01 2009
EXTENSIONS
Edited and extended by Klaus Brockhaus, Apr 06 2009
STATUS
approved