Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 23 2015 22:40:10
%S 0,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,2,1,1,1,1,0,0,1,1,1,1,1,
%T 2,1,2,2,2,2,2,2,3,2,2,2,2,2,1,1,1,0,1,0,1,0,0,1,1,1,1,1,1,0,0,1,1,1,
%U 1,1,2,1,2,2,1,1,1,2,2,1,1,1,2,1,1,2,2,2,2,1,2,1,1,2,2,2,2,1,1,0,1,1,1,1,1
%N (Number of squarefree numbers <= n) minus round(n/zeta(2)).
%C Race between the number of squarefree numbers and round(n/zeta(2)).
%C First term < 0: a(172) = -1.
%D G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Q. J. Math., 48 (1917), pp. 76-92.
%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition (1979), Clarendon Press, pp. 269-270.
%H Daniel Forgues, <a href="/A158819/b158819.txt">Table of n, a(n) for n=1..100000</a>
%H A. Granville, <a href="http://www.dms.umontreal.ca/~andrew/Postscript/polysq3.ps">ABC means we can count squarefree</a>
%F Since zeta(2) = Sum_{i>=1} 1/(i^2) = (Pi^2)/6, we get:
%F a(n) = A013928(n+1) - n/Sum_{i>=1} 1/(i^2) = O(sqrt(n));
%F a(n) = A013928(n+1) - 6*n/(Pi^2) = O(sqrt(n)).
%Y Cf. A008966 1 if n is squarefree, else 0.
%Y Cf. A013928 Number of squarefree numbers < n.
%Y Cf. A100112 If n is the k-th squarefree number then k else 0.
%Y Cf. A057627 Number of nonsquarefree numbers not exceeding n.
%Y Cf. A005117 Squarefree numbers.
%Y Cf. A013929 Nonsquarefree numbers.
%K sign
%O 1,7
%A _Daniel Forgues_, Mar 27 2009