login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158819 (Number of squarefree numbers <= n) minus round(n/zeta(2)). 3
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Race between the number of squarefree numbers and round(n/zeta(2)).

LINKS

Daniel Forgues, Table of n, a(n) for n=1..100000

A. Granville, ABC means we can count squarefree

FORMULA

Since zeta(2) = Sum[{i, 1, inf}, {1/(i^2)}] = (pi^2)/6, we get:

a(n) = A013928(n+1) - n/Sum[{i, 1, inf}, {1/(i^2)}] = O(sqrt(n))

a(n) = A013928(n+1) - 6*n/(pi^2) = O(sqrt(n))

CROSSREFS

Cf. A008966 1 if n is squarefree, else 0.

Cf. A013928 Number of squarefree numbers < n.

Cf. A100112 If n is the k-th squarefree number then k else 0.

Cf. A057627 Number of non-squarefree numbers not exceeding n.

Cf. A005117 Squarefree numbers.

Cf. A013929 Not squarefree numbers.

Sequence in context: A238015 A031214 A056059 * A031279 A124778 A037831

Adjacent sequences:  A158816 A158817 A158818 * A158820 A158821 A158822

KEYWORD

nonn

AUTHOR

Daniel Forgues, Mar 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 18 19:33 EDT 2014. Contains 240733 sequences.