login
Number of partitions of A006003(n).
0

%I #10 Apr 04 2024 10:05:28

%S 176,12310,2012558,679903203,435157697830,495741934760846,

%T 958728697912338045,3031941282464413132742,15209368375944215483241988,

%U 117991131259998859170817958839,1385397746569649033264079085023363,24166113822086183031380235679888630795

%N Number of partitions of A006003(n).

%F a(n) = A000041(A006003(n)).

%p A006003 := proc(n) n*(n^2+1)/2 ; end: A000041 := proc(n) combinat[numbpart](n) ; end: for n from 3 to 20 do printf("%d,", A000041(A006003(n)) ) : od: # _R. J. Mathar_, Mar 28 2009

%t a[n_] := PartitionsP[n*(n^2+1)/2];

%t Table[a[n], {n, 3, 14}] (* _Jean-François Alcover_, Apr 04 2024 *)

%Y Cf. A000041, A006003.

%K nonn

%O 3,1

%A _Paul Muljadi_, Mar 27 2009

%E Definition simplified, offset adjusted, extended by _R. J. Mathar_, Apr 04 2009