login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (binomial(2^n, 2^(n-1)) - binomial(2^(n-1), 2^(n-2)))/2^n.
1

%I #10 Jan 02 2022 21:20:29

%S 1,8,800,18783360,28634752192836096,

%T 187118328452563147377366903401859072,

%U 22533823529098462258163079522899558155141642796614195116180863201125539840

%N a(n) = (binomial(2^n, 2^(n-1)) - binomial(2^(n-1), 2^(n-2)))/2^n.

%H G. C. Greubel, <a href="/A158817/b158817.txt">Table of n, a(n) for n = 2..11</a>

%H Gyula O. H. Katona and Leonid Makar-Limanov, <a href="http://real.mtak.hu/id/eprint/21056">A problem for abelian groups</a>, Asian-Eur. J. Math. 1 (2008), no. 2, 237--241. (Reviewer: Thomas Britz) 20K01 (05B40 94B65).

%F a(n) = ( binomial(2^n, 2^(n-1)) - binomial(2^(n-1), 2^(n-2)) )/2^n.

%t Table[(Binomial[2^n, 2^(n-1)] -Binomial[2^(n-1), 2^(n-2)])/2^n, {n, 2, 12}]

%o (Sage) [( binomial(2^n, 2^(n-1)) - binomial(2^(n-1), 2^(n-2)) )/2^n for n in (2..12)] # _G. C. Greubel_, Dec 22 2021

%Y Cf. A069954.

%K nonn

%O 2,2

%A _Tanya Khovanova_ and Leonid Makar-Limanov, Mar 27 2009