The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158714 Primes p such that p1 = ceiling(p/2) + p is prime and p2 = floor(p1/2) + p1 is prime. 7
 3, 19, 67, 307, 379, 467, 547, 587, 739, 859, 1259, 1699, 1747, 1867, 2027, 2699, 2819, 3259, 3539, 4019, 4507, 5059, 5779, 7547, 8219, 8539, 8747, 8819, 9547, 10067, 10499, 10667, 11939, 13259, 13627, 13859, 14939, 17659, 17707, 17987, 18859 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All a(n) == 3 (mod 8), as this is necessary for p, p1 and p2 to be odd. - Robert Israel, May 11 2014 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE 67 is in the sequence because 67, ceiling(67/2) + 67 = 101 and floor(101/2) + 101 = 151 are all primes. MAPLE N:= 10^5; # to get all entries <= N filter:= proc(p)      local p1, p2;      if not isprime(p) then return false fi;      p1:= ceil(p/2)+p;      if not isprime(p1) then return false fi;      p2:= floor(p1/2)+p1;      isprime(p2); end proc; select(filter, [seq(2*i+1, i=1..floor((N-1)/2)]; # Robert Israel, May 09 2014 MATHEMATICA lst={}; Do[p=Prime[n]; If[PrimeQ[p=Ceiling[p/2]+p], If[PrimeQ[p=Floor[p/2]+p], AppendTo[lst, Prime[n]]]], {n, 7!}]; lst CROSSREFS Cf. A158708, A158709, A158710, A158711, A158712, A158713, A242366. Sequence in context: A071245 A297744 A091968 * A064056 A211061 A059599 Adjacent sequences:  A158711 A158712 A158713 * A158715 A158716 A158717 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Mar 24 2009 EXTENSIONS Definition corrected by Robert Israel, May 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 06:52 EDT 2021. Contains 344943 sequences. (Running on oeis4.)