login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158667
a(n) = 841*n^2 - 29.
2
812, 3335, 7540, 13427, 20996, 30247, 41180, 53795, 68092, 84071, 101732, 121075, 142100, 164807, 189196, 215267, 243020, 272455, 303572, 336371, 370852, 407015, 444860, 484387, 525596, 568487, 613060, 659315, 707252, 756871, 808172, 861155, 915820, 972167, 1030196
OFFSET
1,1
COMMENTS
The identity (58*n^2-1)^2 - (841*n^2-29)*(2*n)^2 = 1 can be written as A158668(n)^2 - a(n)*A005843(n)^2 = 1.
FORMULA
G.f.: 29*x*(-28-31*x+x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 20 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(29))*Pi/sqrt(29))/58.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(29))*Pi/sqrt(29) - 1)/58. (End)
MAPLE
A158667:=n->841*n^2 - 29; seq(A158667(k), k=1..50); # Wesley Ivan Hurt, Nov 01 2013
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {812, 3335, 7540}, 40] (* or *) 29 (29 Range[40]^2 - 1) (* Harvey P. Dale, Oct 31 2011 *)
PROG
(Magma) I:=[812, 3335, 7540]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 18 2012
(PARI) for(n=1, 40, print1(841*n^2-29", ")); \\ Vincenzo Librandi, Feb 18 2012
CROSSREFS
Sequence in context: A093633 A045228 A252223 * A035854 A099116 A183820
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 24 2009
EXTENSIONS
Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009
STATUS
approved