login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158401
a(n) = 841*n^2 - 2*n.
2
839, 3360, 7563, 13448, 21015, 30264, 41195, 53808, 68103, 84080, 101739, 121080, 142103, 164808, 189195, 215264, 243015, 272448, 303563, 336360, 370839, 407000, 444843, 484368, 525575, 568464, 613035, 659288, 707223, 756840, 808139, 861120
OFFSET
1,1
COMMENTS
The identity (841*n-1)^2-(841*n^2-2*n)*(29)^2 = 1 can be written as A158402(n)^2-a(n)*(29)^2 = 1.
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(29^2*t-2)).
Vincenzo Librandi, X^2-AY^2=1
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
G.f.: x*(-839-843*x)/(x-1)^3.
MAPLE
A158401:=n->841*n^2 - 2*n: seq(A158401(n), n=1..50); # Wesley Ivan Hurt, Oct 15 2017
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {839, 3360, 7563}, 50]
Table[841n^2-2n, {n, 40}] (* Harvey P. Dale, Jan 31 2023 *)
PROG
(Magma) I:=[839, 3360, 7563]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 841*n^2 - 2*n.
CROSSREFS
Cf. A158402.
Sequence in context: A118380 A351671 A135639 * A156937 A135640 A306854
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 18 2009
STATUS
approved