|
|
A158080
|
|
Primes p = prime(n) such that the largest even digit of n equals the largest even digit of p.
|
|
0
|
|
|
43, 239, 263, 491, 641, 727, 769, 787, 857, 967, 1013, 1021, 1087, 1223, 1229, 1231, 1237, 1249, 1259, 1279, 1283, 1291, 1297, 1327, 1423, 1543, 1549, 1619, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1789, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes p = prime(n) such that a largest even digit individually exists in the base-10 representations of n and p, and such that it also is the same for both. - R. J. Mathar, May 19 2010
|
|
LINKS
|
Table of n, a(n) for n=1..44.
|
|
MATHEMATICA
|
m[n_] := Max@ Select[IntegerDigits@ n, EvenQ]; Prime@ Select[ Range@ 300, m@ # == m@ Prime@ # >= 0 &] (* Giovanni Resta, Apr 30 2019 *)
|
|
CROSSREFS
|
Cf. A000027, A000040, A156851.
Sequence in context: A142334 A107697 A302977 * A142450 A259421 A202008
Adjacent sequences: A158077 A158078 A158079 * A158081 A158082 A158083
|
|
KEYWORD
|
nonn,base,less
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Mar 12 2009
|
|
EXTENSIONS
|
Corrected (61, 163, 181 removed, 239, 263 inserted, 281, 283, 421 removed, etc.) by R. J. Mathar, May 19 2010
Name edited by Jon E. Schoenfield, Apr 29 2019
|
|
STATUS
|
approved
|
|
|
|