

A158022


Integers n such that all the digits needed to write the consecutive nonnegative integers from 0 to n fill exactly a square (no holes, no overlaps).


10



0, 3, 8, 12, 22, 36, 54, 76, 101, 121, 132, 156, 169, 197, 212, 244, 261, 297, 316, 356, 377, 421, 444, 492, 517, 569, 596, 652, 681, 741, 772, 836, 869, 937, 972, 10221, 10626, 11041, 11466, 11901, 12346, 12801, 13266, 13741, 14226, 14721, 15226
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The sides of the successive squares are given by A158023. Terms computed by JeanMarc Falcoz.


LINKS

Table of n, a(n) for n=1..47.
Eric Angelini, Digit Spiral
E. Angelini, Digit Spiral [Cached copy, with permission]


EXAMPLE

...0...01...012...0123...012345
.......23...345...4567...678910
............678...8910...111213
..................1112...141516
.........................171819
.........................202122
The integers fitting exactly in the SE corner of the above squares are 0, 3, 8, 12, 22. There is no 5x5 square where this is possible.


CROSSREFS

Sequence in context: A022407 A330897 A169923 * A209934 A007434 A128303
Adjacent sequences: A158019 A158020 A158021 * A158023 A158024 A158025


KEYWORD

base,nonn


AUTHOR

Eric Angelini, Mar 11 2009


STATUS

approved



