login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A158013
100*a(n)+13 and 100*a(n)+27 are consecutive primes, i.e., a prime gap 14.
0
1, 106, 133, 154, 184, 217, 220, 307, 334, 436, 454, 496, 505, 574, 580, 604, 616, 631, 805, 892, 1009, 1015, 1045, 1132, 1174, 1189, 1198, 1204, 1360, 1408, 1444, 1504, 1510, 1627, 1702, 1708, 1771, 1954, 1984, 2101, 2182, 2218, 2221, 2245, 2260, 2281
OFFSET
1,2
COMMENTS
Notes:
1) Necessarily a(n)=3k+1: a(n)=3k => 100*3k+27= 3*(100k+9), divisible by 3 a(n)= 3k+2 => 100*(3k+2)+13=3*(100k+71), divisible by 3.
2) It is conjectured that sequence is infinite.
3) Each sequence 100*b(n)+13 and 100*c(n)+27 includes an infinite number of primes (because of DIRICHLET's theorem).
4) Analogous sequences for investigation of prime gaps are obvious and useful.
REFERENCES
N. G. Tchudakoff, On the difference between two neighboring prime numbers, Math. Sb. 1, (1936), 799-814.
R. K. Guy, Unsolved problems in number theory
LINKS
A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford 8 (1937), 255-266.
FORMULA
p(k+1)=100*a(n)+27 and p(k)=100*a(n)+13 where p(k) is the k-th prime => prime gap p(k+1)-p(k)=14.
EXAMPLE
1) 113=P(30) and 127=P(31) => a(1)=1.
2) 1613=P(255) and 1627=P(258) prime too but 1619=P(256), 1621=P(257) => 1613 and 1627 are not consecutive primes.
3) next: 10613=P(1295), 10627 = P(1296) => a(2)=106.
MATHEMATICA
fQ[n_] := PrimeQ[ Range[100 n + 13, 100 n + 27, 2]] == {True, False, False, False, False, False, False, True}; Select[ Range@ 2295, fQ@# &] (* Robert G. Wilson v, Mar 13 2009 *)
CROSSREFS
Cf. A157772 (primes ending with "13" ordered in natural growing size).
Sequence in context: A095645 A039554 A186458 * A250643 A163625 A070796
KEYWORD
nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 11 2009
EXTENSIONS
a(31)-a(46) from Robert G. Wilson v, Mar 13 2009
STATUS
approved