login
A157788
1482401250n^2 - 830253600n + 116250751.
3
768398401, 4385348551, 10967101201, 20513656351, 33025014001, 48501174151, 66942136801, 88347901951, 112718469601, 140053839751, 170354012401, 203618987551, 239848765201, 279043345351, 321202728001, 366326913151, 414415900801
OFFSET
1,1
COMMENTS
The identity (1482401250*n^2-830253600*n +116250751)^2-(27225*n^2-15248*n +2135) *(8984250*n -2515920)^2=1 can be written as a(n)^2-A157786(n)*A157787(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f: x*(-768398401-2080153348*x-116250751*x^2)/(x-1)^3.
MATHEMATICA
Table[1482401250n^2-830253600n+116250751, {n, 30}]
PROG
(Magma) I:=[768398401, 4385348551, 10967101201]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..30]];
(PARI) a(n) = 1482401250*n^2 - 830253600*n + 116250751.
CROSSREFS
Sequence in context: A104932 A306569 A118876 * A058420 A297867 A344729
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 06 2009
STATUS
approved