login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A157787
8984250n - 2515920.
3
6468330, 15452580, 24436830, 33421080, 42405330, 51389580, 60373830, 69358080, 78342330, 87326580, 96310830, 105295080, 114279330, 123263580, 132247830, 141232080, 150216330, 159200580, 168184830, 177169080, 186153330, 195137580
OFFSET
1,1
COMMENTS
The identity (1482401250*n^2-830253600*n +116250751)^2-(27225*n^2-15248*n +2135) *(8984250*n -2515920)^2=1 can be written as A157788(n)^2-A157786(n)*a(n)^2=1.
FORMULA
a(n) = 2*a(n-1) -a(n-2).
G.f: x*(6468330+2515920*x)/(x-1)^2.
MATHEMATICA
Table[8984250n-2515920, {n, 30}].
LinearRecurrence[{2, -1}, {6468330, 15452580}, 30] (* Harvey P. Dale, Mar 29 2015 *)
PROG
(Magma) I:=[6468330, 15452580]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..30]];
(PARI) a(n) = 8984250*n - 2515920.
CROSSREFS
Sequence in context: A254097 A209950 A288074 * A115615 A257016 A234090
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 06 2009
STATUS
approved