login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157719
Smallest k such that p^p -+ k is prime, where p=prime(n).
1
1, 4, 42, 186, 1302, 114, 1980, 1638, 10800, 12882, 12972, 24324, 25602, 41706, 19236, 51864, 25752, 60672, 108936, 36468, 85176, 131718, 45216, 361710, 40716, 187998, 450684, 488784, 4842, 117450, 479304, 212610, 32670, 556062, 354432
OFFSET
1,2
COMMENTS
All terms except the first term must be even numbers. - Harvey P. Dale, Jul 01 2023
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..75
EXAMPLE
2^2-+1=primes, 3^3=27-+4=primes, 5^5=3125-+42=3083,3167=primes, 7^7=823543-+186=823357,823729=primes, ...
MATHEMATICA
lst={1}; Do[p=Prime[n]; pp=p^p; Do[If[PrimeQ[pp-k]&&PrimeQ[pp+k], If[pp-k<2, Break[]]; AppendTo[lst, k]; Print[p.k]; Break[]], {k, 2, 10^9}], {n, 4!}]; lst
f[n_] := Block[ {pp = Prime[n]^Prime[n], k = If[n == 1, 1, 2]}, While[ !PrimeQ[pp - k] || !PrimeQ[pp + k], k += 2]; k]; lst = {}; Do[a = f@n; AppendTo[lst, a]; Print[{Prime@n, a}], {n, 100}] (* Robert G. Wilson v, Mar 20 2009 *)
skp[p_]:=Module[{k=1, p2=p^p}, While[AnyTrue[p2+{k, -k}, CompositeQ], k++]; k]; Table[skp[p], {p, Prime[Range[40]]}] (* Harvey P. Dale, Jul 01 2023 *)
CROSSREFS
Sequence in context: A089551 A347320 A220835 * A280956 A301943 A219101
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(13) onwards from Robert G. Wilson v, Mar 20 2009
STATUS
approved