login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n)=(2*n+1)!*(2*n-2)!/((n-1)!*(n!)^2*6) ,n=1,2... .
0

%I #9 Jun 26 2022 10:50:35

%S 1,10,280,12600,776160,60540480,5708102400,630745315200,

%T 79894406592000,11408921261337600,1812981305892556800,

%U 317271728531197440000,60623305667038033920000,12557684745315021312000000

%N a(n)=(2*n+1)!*(2*n-2)!/((n-1)!*(n!)^2*6) ,n=1,2... .

%C Representation of a(n) as n-th moment of a positive weight function on a positive half-axis, in Maple notation: a(n)=int(x^n*(1/(48*(Pi)^(3/2)))*exp(-x/32)*BesselK(1,x/32)/sqrt(x), x=0..infinity), n=1,2... .

%F E.g.f.: (1/12)*(Pi+2*EllipticK(4*sqrt(x))-4*EllipticE(4*sqrt(x)))/Pi

%F Conjecture: n*a(n) -4*(2*n+1)*(2*n-3)*a(n-1)=0. - _R. J. Mathar_, Jun 08 2016

%F a(n) ~ 2^(4*n - 3/2) * n^(n - 1/2) / (3 * sqrt(Pi) * exp(n)). - _Vaclav Kotesovec_, Jun 26 2022

%o (PARI) a(n)=(2*n+1)!*(2*n-2)!/((n-1)!*(n!)^2*6); \\ _Michel Marcus_, Aug 17 2013

%K nonn

%O 1,2

%A _Karol A. Penson_, Mar 04 2009