login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157713
a(n)=(2*n+1)!*(2*n-2)!/((n-1)!*(n!)^2*6) ,n=1,2... .
0
1, 10, 280, 12600, 776160, 60540480, 5708102400, 630745315200, 79894406592000, 11408921261337600, 1812981305892556800, 317271728531197440000, 60623305667038033920000, 12557684745315021312000000
OFFSET
1,2
COMMENTS
Representation of a(n) as n-th moment of a positive weight function on a positive half-axis, in Maple notation: a(n)=int(x^n*(1/(48*(Pi)^(3/2)))*exp(-x/32)*BesselK(1,x/32)/sqrt(x), x=0..infinity), n=1,2... .
FORMULA
E.g.f.: (1/12)*(Pi+2*EllipticK(4*sqrt(x))-4*EllipticE(4*sqrt(x)))/Pi
Conjecture: n*a(n) -4*(2*n+1)*(2*n-3)*a(n-1)=0. - R. J. Mathar, Jun 08 2016
a(n) ~ 2^(4*n - 3/2) * n^(n - 1/2) / (3 * sqrt(Pi) * exp(n)). - Vaclav Kotesovec, Jun 26 2022
PROG
(PARI) a(n)=(2*n+1)!*(2*n-2)!/((n-1)!*(n!)^2*6); \\ Michel Marcus, Aug 17 2013
CROSSREFS
Sequence in context: A203149 A117654 A067427 * A205824 A251580 A165457
KEYWORD
nonn
AUTHOR
Karol A. Penson, Mar 04 2009
STATUS
approved