OFFSET
1,1
COMMENTS
The identity (781250*n^2-455000*n+66249)^2-(625*n^2-364*n+53)*(31250*n-9100)^2=1 can be written as A157623(n)^2-a(n)*A157622(n)^2=1.
The continued fraction expansion of sqrt(a(n)) is [25n-8; {1, 2, 1, 1, 2, 1, 50n-16}]. - Magus K. Chu, Oct 05 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1 [Dead link]
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-314-883*x-53*x^2)/(x-1)^3.
MAPLE
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {314, 1825, 4586}, 40]
PROG
(Magma) I:=[314, 1825, 4586]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 625*n^2 - 364*n + 53;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 03 2009
STATUS
approved