login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157621
a(n) = 625n^2 - 364n + 53.
3
314, 1825, 4586, 8597, 13858, 20369, 28130, 37141, 47402, 58913, 71674, 85685, 100946, 117457, 135218, 154229, 174490, 196001, 218762, 242773, 268034, 294545, 322306, 351317, 381578, 413089, 445850, 479861, 515122, 551633, 589394, 628405
OFFSET
1,1
COMMENTS
The identity (781250*n^2-455000*n+66249)^2-(625*n^2-364*n+53)*(31250*n-9100)^2=1 can be written as A157623(n)^2-a(n)*A157622(n)^2=1.
The continued fraction expansion of sqrt(a(n)) is [25n-8; {1, 2, 1, 1, 2, 1, 50n-16}]. - Magus K. Chu, Oct 05 2022
LINKS
Vincenzo Librandi, X^2-AY^2=1 [Dead link]
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-314-883*x-53*x^2)/(x-1)^3.
MAPLE
A157621:= n-> 625*n^2 - 364*n + 53: seq(A157621(n), n=1..40); # Wesley Ivan Hurt, Feb 15 2014
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {314, 1825, 4586}, 40]
PROG
(Magma) I:=[314, 1825, 4586]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 625*n^2 - 364*n + 53;
CROSSREFS
Sequence in context: A257867 A050818 A050807 * A230945 A377769 A183691
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 03 2009
STATUS
approved