|
|
A157377
|
|
a(n) = 531441*n - 313146.
|
|
3
|
|
|
218295, 749736, 1281177, 1812618, 2344059, 2875500, 3406941, 3938382, 4469823, 5001264, 5532705, 6064146, 6595587, 7127028, 7658469, 8189910, 8721351, 9252792, 9784233, 10315674, 10847115, 11378556, 11909997, 12441438, 12972879
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The identity (43046721*n^2-50729652*n+14945959)^2-(6561*n^2-7732*n+2278)*(531441*n-313146)^2=1 can be written as A157378(n)^2-A157376(n)*a(n)^2=1.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*a(n-1) - a(n-2).
G.f.: x*(218295+313146*x)/(x-1)^2.
E.g.f.: 81*((6561*x - 3866)*exp(x) + 3866). - G. C. Greubel, Feb 04 2018
|
|
MAPLE
|
|
|
MATHEMATICA
|
LinearRecurrence[{2, -1}, {218295, 749736}, 40]
Table[531441*n-313146, {n, 1, 30}] (* G. C. Greubel, Feb 04 2018 *)
|
|
PROG
|
(Magma) I:=[218295, 749736]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n) = 531441*n - 313146.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|