login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157370
a(n) = 2401*n^2 - 3822*n + 1520.
3
99, 3480, 11663, 24648, 42435, 65024, 92415, 124608, 161603, 203400, 249999, 301400, 357603, 418608, 484415, 555024, 630435, 710648, 795663, 885480, 980099, 1079520, 1183743, 1292768, 1406595, 1525224, 1648655, 1776888, 1909923
OFFSET
1,1
COMMENTS
The identity (2401*n^2-3822*n+1520)^2-(49*n^2-78*n+31)*( 343*n-273)^2=1 can be written as a(n)^2-A157368(n)*A157369(n)^2=1.
FORMULA
a(1)=99, a(2)=3480, a(3)=11663, a(n)=3*a(n-1)-3*a(n-2)+a(n-3) [From Harvey P. Dale, Dec 03 2011]
G.f.: x*(1520*x^2 + 3183*x + 99)/(1-x)^3. - Harvey P. Dale, Dec 03 2011
E.g.f.: (1520 - 1421*x + 2401*x^2)*exp(x) - 1520. - G. C. Greubel, Feb 02 2018
MATHEMATICA
Table[2401n^2-3822n+1520, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {99, 3480, 11663}, 40] (* Harvey P. Dale, Dec 03 2011 *)
PROG
(Magma) I:=[99, 3480, 11663]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n)=2401*n^2-3822*n+1520 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A174944 A221330 A246247 * A163040 A133319 A196745
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 28 2009
STATUS
approved