login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Shorthand for A157035, the largest prime with 2^n digits.
3

%I #34 Jun 27 2024 09:04:07

%S 3,3,27,11,63,21,51,17,813,377,7017,27381,7763,1133,119387,67347,

%T 121877

%N Shorthand for A157035, the largest prime with 2^n digits.

%C The actual prime A157035(n) is obtained as 10^(2^n) - a(n).

%F a(n) = 10^(2^n) - A157035(n).

%F a(n) = A033874(2^n).

%p a:= n-> (t-> t-prevprime(t))(10^(2^n)):

%p seq(a(n), n=0..10); # _Alois P. Heinz_, Mar 02 2022

%o (PARI) { a(n) = 10^(2^n) - precprime(10^(2^n)) } \\ _Max Alekseyev_, Mar 28 2009

%o (Python)

%o from sympy import prevprime

%o def a(n): return 10**(2**n) - prevprime(10**(2**n))

%o print([a(n) for n in range(10)]) # _Michael S. Branicky_, Mar 02 2022

%Y Cf. A033874, A157034, A157035.

%K nonn,base,more

%O 0,1

%A _Lekraj Beedassy_, Feb 22 2009

%E a(8)-a(13) from _Ray Chandler_ and _Max Alekseyev_, Mar 22 2009

%E a(14) from _Jinyuan Wang_, Feb 22 2022

%E a(15) from _Michael S. Branicky_, Jun 19 2024

%E a(16) from _Michael S. Branicky_, Jun 27 2024