login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157036
Shorthand for A157035, the largest prime with 2^n digits.
3
3, 3, 27, 11, 63, 21, 51, 17, 813, 377, 7017, 27381, 7763, 1133, 119387, 67347, 121877
OFFSET
0,1
COMMENTS
The actual prime A157035(n) is obtained as 10^(2^n) - a(n).
FORMULA
a(n) = 10^(2^n) - A157035(n).
a(n) = A033874(2^n).
MAPLE
a:= n-> (t-> t-prevprime(t))(10^(2^n)):
seq(a(n), n=0..10); # Alois P. Heinz, Mar 02 2022
PROG
(PARI) { a(n) = 10^(2^n) - precprime(10^(2^n)) } \\ Max Alekseyev, Mar 28 2009
(Python)
from sympy import prevprime
def a(n): return 10**(2**n) - prevprime(10**(2**n))
print([a(n) for n in range(10)]) # Michael S. Branicky, Mar 02 2022
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Lekraj Beedassy, Feb 22 2009
EXTENSIONS
a(8)-a(13) from Ray Chandler and Max Alekseyev, Mar 22 2009
a(14) from Jinyuan Wang, Feb 22 2022
a(15) from Michael S. Branicky, Jun 19 2024
a(16) from Michael S. Branicky, Jun 27 2024
STATUS
approved