login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156960
q-Carlitz-Al-Salam-Appell polynomial coefficients:q=2; p(x,n)=x*p[x, n - 1] - (1 - q^(n - 1))*q^(n - 2)*p[x, n - 2].
0
1, 0, 1, 1, 0, 1, 0, 7, 0, 1, 28, 0, 35, 0, 1, 0, 868, 0, 155, 0, 1, 13888, 0, 18228, 0, 651, 0, 1, 0, 1763776, 0, 330708, 0, 2667, 0, 1, 112881664, 0, 149920960, 0, 5622036, 0, 10795, 0, 1, 0, 57682530304, 0, 10944230080, 0, 92672916, 0, 43435, 0, 1
OFFSET
0,8
COMMENTS
Row sums are:
{1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832,...}.
REFERENCES
T Ernst,The different tongues of q - calculus,Proceedings of the Estonian Academy of Sciences, 2008 - kirj.ee, 2-81-99,pp.14-15
FORMULA
q=2; p(x,n)=x*p[x, n - 1] - (1 - q^(n - 1))*q^(n - 2)*p[x, n - 2];
t(n,m)=coefficients(p(x,n)).
EXAMPLE
{1},
{0, 1},
{1, 0, 1},
{0, 7, 0, 1},
{28, 0, 35, 0, 1},
{0, 868, 0, 155, 0, 1},
{13888, 0, 18228, 0, 651, 0, 1},
{0, 1763776, 0, 330708, 0, 2667, 0, 1},
{112881664, 0, 149920960, 0, 5622036, 0, 10795, 0, 1},
{0, 57682530304, 0, 10944230080, 0, 92672916, 0, 43435, 0, 1},
{14766727757824, 0, 19669742833664, 0, 746396491456, 0, 1504831636, 0, 174251, 0, 1}
MATHEMATICA
Clear[p, x, n, q];
p[x, 0] := 1; p[x, 1] := x;
p[x_, n_] := p[x, n] = x*p[x, n - 1] - (1 - q^(n - 1))*q^(n - 2)*p[x, n - 2];
q = 2; Table[ExpandAll[p[x, n]], {n, 0, 10}];
Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A297787 A101031 A222063 * A287697 A335953 A227958
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Feb 19 2009
STATUS
approved