

A227958


Decimal expansion of exp(1/(2*sqrt(2))).


1



7, 0, 2, 1, 8, 8, 5, 0, 1, 3, 2, 6, 5, 5, 9, 5, 9, 6, 2, 3, 8, 1, 8, 7, 4, 7, 9, 7, 4, 6, 2, 1, 8, 0, 6, 3, 5, 0, 4, 5, 3, 0, 5, 1, 7, 0, 3, 8, 9, 6, 2, 0, 7, 6, 6, 6, 2, 8, 9, 4, 3, 2, 8, 6, 8, 7, 8, 7, 9, 6, 3, 0, 8, 2, 3, 5, 4, 5, 3, 0, 1, 1, 2, 8, 1, 7, 9, 1, 7, 7, 2, 1, 4, 5, 2, 8, 4, 2, 8, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Let {x} denote the fractional part of a real number x. Let p(k) = A001333(k) and q(k) = A000129(k), the numerators and denominators of the continued fraction convergents to sqrt(2). exp(1/(2*sqrt(2))) is the limit as k goes to infinity of the sequence b(n) = b(2k) = {q(2k)*sqrt(2)}^(2k) = q(2k)*sqrt(2)  p(2k) +1. b(n) is a subsequence of a(n) = {n*sqrt(2)}^n. b(n) can be used to demonstrate that a(n) is divergent.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000


EXAMPLE

exp(1/(2*sqrt(2))) = 0.70218850132655959623818747974621806350453051703896...


MAPLE

evalf(exp(1/(2*sqrt(2))), 120); # Muniru A Asiru, Oct 07 2018


MATHEMATICA

RealDigits[Exp[1/(2*2^(1/2))], 10, 100][[1]]


PROG

(PARI) exp(1/sqrt(8)) \\ Charles R Greathouse IV, Apr 21 2016
(MAGMA) SetDefaultRealField(RealField(100)); Exp(1/Sqrt(8)); // G. C. Greubel, Oct 06 2018


CROSSREFS

Sequence in context: A156960 A287697 A067840 * A118858 A261167 A197014
Adjacent sequences: A227955 A227956 A227957 * A227959 A227960 A227961


KEYWORD

cons,nonn


AUTHOR

Geoffrey Critzer, Oct 26 2013


STATUS

approved



