login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156936
G.f. of the z^3 coefficients of the FP2 in the fourth column of the A156925 matrix.
4
-6, -242, -7382, -130472, -1594852, -15166900, -119173924, -788897224, -4270968154, -15821839894, 13226522262, 1056215331024, 14319250065624, 147391347765784, 1340374086462424
OFFSET
2,1
FORMULA
a(n) = 58*a(n-1) - 1571*a(n-2) + 26428*a(n-3)- 309755*a(n-4) + 2689810*a(n-5) - 17964865*a(n-6) + 94564560*a(n-7) - 398823930*a(n-8) + 1362709780*a(n-9) - 3799420462*a(n-10) + 8679603176*a(n-11) - 16269149542*a(n-12) + 24993226196*a(n-13) - 31349144530*a(n-14) + 31885547728*a(n-15) - 26017270869*a(n-16) + 16759251378*a(n-17) - 8320633119*a(n-18) + 3068440380*a(n-19) - 790800975*a(n-20) + 127028250*a(n-21) - 9568125*a(n-22).
G.f.: GF4(z;m=3) = z^2*(-6 + 106*z - 2772*z^2 + 76070*z^3 - 1087552*z^4 + 8632650*z^5 - 40358780*z^6 + 106452214*z^7 - 99774996*z^8 - 284430514*z^9 + 1125952500*z^10 - 1581820542*z^11 + 737716032*z^12 + 414532350*z^13 - 357790500*z^14 - 81870750*z^15 - 1275750*z^16)/((1-z)^10*(1-3*z)^7*(1-5*z)^4*(1-7*z)).
CROSSREFS
Cf. A156933.
Equals fourth column of A156925.
Other columns A156934, A156935, A156937.
Sequence in context: A064382 A080358 A233826 * A231019 A254009 A072228
KEYWORD
easy,sign,uned
AUTHOR
Johannes W. Meijer, Feb 20 2009
STATUS
approved