OFFSET
0,1
LINKS
Shawn A. Broyles, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = (n^2 + 1)*(n^2 + 4) = n^2 + (n^2 + 2)^2.
G.f.: 2*(2 -5*x +15*x^2 -5*x^3 +5*x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; corrected by R. J. Mathar, Sep 16 2009
a(0)=4, a(1)=10, a(2)=40, a(3)=130, a(4)=340, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, May 04 2011
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/8 - Pi*tanh(Pi)/24.
Sum_{n>=0} (-1)^n/a(n) = 1/8 + Pi*csch(Pi)/6 - Pi*csch(Pi)*sech(Pi)/24. (End)
E.g.f.: (4 + 6*x + 12*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Jun 10 2021
MATHEMATICA
Table[n^4+5n^2+4, {n, 0, 40}]
PROG
(Magma) [n^4+5*n^2+4: n in [0..50]];
(PARI) a(n)=n^4+5*n^2+4
(Sage) [(n^2 +1)*(n^2 +4) for n in (0..50)] # G. C. Greubel, Jun 10 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 16 2009
STATUS
approved