The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156721 a(n) = 57122*n^2 - 47320*n + 9801. 3
19603, 143649, 381939, 734473, 1201251, 1782273, 2477539, 3287049, 4210803, 5248801, 6401043, 7667529, 9048259, 10543233, 12152451, 13875913, 15713619, 17665569, 19731763, 21912201, 24206883, 26615809, 29138979 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The identity (57122*n^2 - 47320*n+9801)^2 - (169*n^2 - 140*n + 29)*(4394*n - 1820)^2 = 1 can be written as a(n)^2 - A156639(n)*A156627(n)^2 = 1.
This is the case s=13 and r=70 of the identity (2*(s^2*n-r)^2+1)^2 - (((s^2*n-r)^2+1)/s^2)*(2*s*(s^2*n-r))^2 = 1, where ((s^2*n-r)^2+1)/s^2 is an integer if r^2 == -1 (mod s^2). Therefore, for s=13, nonnegative r values are: 70, 99, 239, 268, 408, 437, 577, 606, 746, 775, 915, 944, ... - Bruno Berselli, Apr 24 2018
LINKS
FORMULA
G.f.: x*(19603 + 84840*x + 9801*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {19603, 143649, 381939}, 40]
PROG
(Magma) I:=[19603, 143649, 381939]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]];
(PARI) a(n)=57122*n^2-47320*n+9801 \\ Charles R Greathouse IV, Dec 23 2011
CROSSREFS
Sequence in context: A344829 A221333 A069369 * A174760 A115472 A022234
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 15 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 02:53 EDT 2024. Contains 373402 sequences. (Running on oeis4.)