login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156696
Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(2*i-1) ) and m = 1, read by rows.
5
1, 1, 1, 1, -1, 1, 1, 5, 5, 1, 1, -45, 225, -45, 1, 1, 585, 26325, 26325, 585, 1, 1, -9945, 5817825, -52360425, 5817825, -9945, 1, 1, 208845, 2076963525, 243004732425, 243004732425, 2076963525, 208845, 1, 1, -5221125, 1090405850625, -2168817236893125, 28194624079610625, -2168817236893125, 1090405850625, -5221125, 1
OFFSET
0,8
COMMENTS
Row sums are: {1, 2, 1, 12, 137, 53822, -40744663, 490163809592, 23859170407083377, 14660989220762621919002, -54998077449004520067705092623, ...}.
FORMULA
T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(2*i-1) ) and m = 1.
T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (1, 2, -1). - G. C. Greubel, Feb 25 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -1, 1;
1, 5, 5, 1;
1, -45, 225, -45, 1;
1, 585, 26325, 26325, 585, 1;
1, -9945, 5817825, -52360425, 5817825, -9945, 1;
1, 208845, 2076963525, 243004732425, 243004732425, 2076963525, 208845, 1;
MATHEMATICA
(* First program *)
t[n_, k_]:= If[k==0, n!, Product[1 -(2*i-1)*(k+1), {j, n}, {i, 0, j-1}] ];
T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 25 2021 *)
(* Second program *)
f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j, n}];
T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n, m, p, q]/(f[k, m, p, q]*f[n-k, m, p, q]));
Table[T[n, k, 1, 2, -1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 25 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n))
def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)))
flatten([[T(n, k, 1, 2, -1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 25 2021
(Magma)
f:= func< n, m, p, q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >;
T:= func< n, k, m, p, q | f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)) >;
[T(n, k, 1, 2, -1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 25 2021
CROSSREFS
Cf. A007318 (m=0), this sequence (m=1), A156697 (m=2), A156698 (m=3).
Sequence in context: A188587 A373434 A174119 * A232651 A145227 A236555
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 13 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 25 2021
STATUS
approved