login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156573
a(n) = 34*a(n-1) - a(n-2) - 4232 for n > 2; a(1)=529, a(2)=13225.
4
529, 13225, 444889, 15108769, 513249025, 17435353849, 592288777609, 20120383080625, 683500735959409, 23218904639535049, 788759257008228025, 26794595833640213569, 910227499086759029089, 30920940373116166771225
OFFSET
1,1
FORMULA
a(n) = 529*(2 + (3 - 2*sqrt(2))*(17 + 12*sqrt(2))^n + (3 + 2*sqrt(2))*(17 - 12*sqrt(2))^n)/8.
a(n) = 529*A008844(n).
G.f.: 529*x*(1 -10*x +x^2)/((1-x)*(1-34*x+x^2)). [corrected by Klaus Brockhaus, Sep 22 2009]
Limit_{n -> infinity} a(n)/a(n-1) = 17+12*sqrt(2).
a(n) = -529*[n=0] + (529/4) + (1587/4)*(ChebyshevU(n, 17) - 33*ChebyshevU(n-1, 17)). - G. C. Greubel, Jan 04 2022
EXAMPLE
a(3) = 34*a(2) - a(1) - 4232 = 34*13225 - 529 - 4232 = 444889.
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {529, 13225, 444889}, 30] (* G. C. Greubel, Jan 04 2022 *)
PROG
(PARI) {m=14; v=concat([529, 13225], vector(m-2)); for(n=3, m, v[n]=34*v[n-1]-v[n-2]-4232); v}
(Sage)
def a(n): return -529*bool(n==0) + (529/4) + (3/4)*(chebyshev_U(n, 17) - 33*chebyshev_U(n-1, 17))
[a(n) for n in (1..30)] # G. C. Greubel, Jan 04 2022
CROSSREFS
Second trisection of A156572.
Cf. A008844, A156164 (decimal expansion of 17+12*sqrt(2)), A156574, A156575.
Sequence in context: A067475 A052074 A112079 * A034987 A206861 A206955
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Feb 11 2009
EXTENSIONS
Revised by Klaus Brockhaus, Feb 16 2009
STATUS
approved