login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156538 A recursion triangle sequence:f(q,k)=(1 - (-q)^k)/(1 + q);q=3; e(n,k)= f(q, k)*e(n - 1, k) + (-q)^(k - 1)e(n - 1, k - 1); t(n,m)=(e(n, k) + e(n, n - k + 1)) 0
2, 2, 2, 2, -10, 2, 2, -31, -31, 2, 2, 989, -406, 989, 2, 2, 81578, -16213, -16213, 81578, 2, 2, -19816168, 3777869, 670556, 3777869, -19816168, 2, 2, -14445938413, 2685823244, 251846999, 251846999, 2685823244, -14445938413, 2, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row sums are: 2, 4, -6, -58, 1576, 130734, -31406038, -23016536336, 50226264655566,

329827987437639830,....

LINKS

Table of n, a(n) for n=1..37.

R. Parthasarathy, q-Fermionic Numbers and Their Roles in Some Physical Problems, arXiv:quant-ph/0403216

FORMULA

f(q,k)=(1 - (-q)^k)/(1 + q);q=3;

e(n,k)= f(q, k)*e(n - 1, k) + (-q)^(k - 1)e(n - 1, k - 1);

t(n,m)=(e(n, k) + e(n, n - k + 1))

EXAMPLE

{2},

{2, 2},

{2, -10, 2},

{2, -31, -31, 2},

{2, 989, -406, 989, 2},

{2, 81578, -16213, -16213, 81578, 2},

{2, -19816168, 3777869, 670556, 3777869, -19816168, 2},

{2, -14445938413, 2685823244, 251846999, 251846999, 2685823244, -14445938413, 2},

{2, 31593267585083, -5943908538085, -551461074016, 30468709598, -551461074016, -5943908538085, 31593267585083, 2},

{2, 207283428627421172, -38813632028151640, -3653430427397491, 97627546947872, 97627546947872, -3653430427397491, -38813632028151640, 207283428627421172, 2}

MATHEMATICA

Clear[e, n, k, q]; f[q_, k_] := (1 - (-q)^k)/(1 + q); |Q q = 3; e[n_, 0] := 0;

e[n_, 1] := 1'

e[n_, n_] := 1; e[n_, k_] := 0 /; k >= n + 1;

e[n_, k_] := f[q, k]*e[n - 1, k] + (-q)^(k - 1)e[n - 1, k - 1];

Table[Table[(e[n, k] + e[n, n - k + 1]), {k, 1, n}], {n, 1, 10}];

Flatten[%]

CROSSREFS

Sequence in context: A058787 A085056 A265447 * A249768 A217503 A165466

Adjacent sequences:  A156535 A156536 A156537 * A156539 A156540 A156541

KEYWORD

sign,tabl,uned

AUTHOR

Roger L. Bagula, Feb 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)