OFFSET
1,1
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
R. Parthasarathy, q-Fermionic Numbers and Their Roles in Some Physical Problems, arXiv:quant-ph/0403216, 2004.
FORMULA
T(n, k, q) = e(n, k, q) + e(n, n-k+1, q), where e(n, k, q) = ((1 - (-q)^k)/(1 + q))*e(n-1, k, q) + (-q)^(k-1)*e(n-1, k-1, q), e(n, 0, q) = e(n, n, q) = 1, and q = 3.
EXAMPLE
Triangle begins as:
2;
2, 2;
2, -10, 2;
2, -31, -31, 2;
2, 989, -406, 989, 2;
2, 81578, -16213, -16213, 81578, 2;
2, -19816168, 3777869, 670556, 3777869, -19816168, 2;
2, -14445938413, 2685823244, 251846999, 251846999, 2685823244, -14445938413, 2;
MATHEMATICA
e[n_, k_, q_]:= e[n, k, q]= If[k<0 || k>n, 0, If[k==1 || k==n, 1, ((1-(-q)^k)/(1+q))*e[n-1, k, q] + (-q)^(k-1)*e[n-1, k-1, q] ]];
T[n_, k_, q_]:= e[n, k, q] + e[n, n-k+1, q];
Table[T[n, k, 3], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Jan 03 2022 *)
PROG
(Sage)
def e(n, k, q):
if (k<0 or k>n): return 0
elif (k==1 or k==n): return 1
else: return ((1-(-q)^k)/(1+q))*e(n-1, k, q) + (-q)^(k-1)*e(n-1, k-1, q)
def A156538(n, k, q): return e(n, k, q) + e(n, n-k+1, q)
flatten([[A156538(n, k, 3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jan 03 2022
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 09 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 03 2022
STATUS
approved