login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: A(x) = exp( Sum_{n>=1} n(n+1)/2 * a(n-1)*x^n/n! ) = Sum_{n>=0} a(n)*x^n/n! with a(0)=1.
2

%I #4 Dec 17 2017 15:59:27

%S 1,1,4,34,482,10056,286372,10591372,491169996,27826318000,

%T 1887581200256,150885500428224,14028718134958936,1500672248541122944,

%U 182987661921689610000,25231215606822797450176

%N E.g.f.: A(x) = exp( Sum_{n>=1} n(n+1)/2 * a(n-1)*x^n/n! ) = Sum_{n>=0} a(n)*x^n/n! with a(0)=1.

%F a(n) = Sum_{k=1..n} k(k+1)/2 * C(n-1,k-1)*a(k-1)*a(n-k) for n>0, with a(0)=1.

%F E.g.f. satisifies: A(x) = exp( d/dx x^2*A(x)/2 ). - _Paul D. Hanna_, Dec 17 2017

%e E.g.f: A(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 482*x^4/4! + 10056*x^5/5! +...

%e log(A(x)) = x + 3*1*x^2/2! + 6*4*x^3/3! + 10*34*x^4/4! + 15*482*x^5/5! +...

%e such that log(A(x)) = x*A(x) + x^2*A'(x)/2 = d/dx x^2*A(x)/2.

%o (PARI) {a(n) = if(n==0,1,n!*polcoeff(exp(sum(k=1,n,k*(k+1)/2*a(k-1)*x^k/k!)+x*O(x^n)),n))}

%o for(n=0,25,print1(a(n),", "))

%o (PARI) {a(n) = if(n==0,1,sum(k=1,n,k*(k+1)/2*binomial(n-1,k-1)*a(k-1)*a(n-k)))}

%o for(n=0,25,print1(a(n),", "))

%o (PARI) {a(n) = my(A=1); for(i=1,n, A = exp(deriv(x^2*A/2 +x^2*O(x^n)))); n!*polcoeff(A,n)}

%o for(n=0,25,print1(a(n),", ")) \\ _Paul D. Hanna_, Dec 17 2017

%Y Cf. A156326, A156327.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 08 2009