login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156325
E.g.f.: A(x) = exp( Sum_{n>=1} n(n+1)/2 * a(n-1)*x^n/n! ) = Sum_{n>=0} a(n)*x^n/n! with a(0)=1.
2
1, 1, 4, 34, 482, 10056, 286372, 10591372, 491169996, 27826318000, 1887581200256, 150885500428224, 14028718134958936, 1500672248541122944, 182987661921689610000, 25231215606822797450176
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} k(k+1)/2 * C(n-1,k-1)*a(k-1)*a(n-k) for n>0, with a(0)=1.
E.g.f. satisifies: A(x) = exp( d/dx x^2*A(x)/2 ). - Paul D. Hanna, Dec 17 2017
EXAMPLE
E.g.f: A(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 482*x^4/4! + 10056*x^5/5! +...
log(A(x)) = x + 3*1*x^2/2! + 6*4*x^3/3! + 10*34*x^4/4! + 15*482*x^5/5! +...
such that log(A(x)) = x*A(x) + x^2*A'(x)/2 = d/dx x^2*A(x)/2.
PROG
(PARI) {a(n) = if(n==0, 1, n!*polcoeff(exp(sum(k=1, n, k*(k+1)/2*a(k-1)*x^k/k!)+x*O(x^n)), n))}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = if(n==0, 1, sum(k=1, n, k*(k+1)/2*binomial(n-1, k-1)*a(k-1)*a(n-k)))}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = exp(deriv(x^2*A/2 +x^2*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 17 2017
CROSSREFS
Sequence in context: A208831 A294475 A198976 * A248654 A336495 A111169
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2009
STATUS
approved