login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A052343.
0

%I #9 Feb 17 2019 08:52:16

%S 1,2,3,4,5,5,7,8,8,9,10,11,12,13,13,14,16,16,17,17,18,20,21,21,22,23,

%T 23,24,25,26,27,29,29,29,30,30,32,33,34,35,35,35,37,38,38,39,41,41,42,

%U 43,43,45,45,45,45,47,49,50,51,51,52

%N Partial sums of A052343.

%C a(n) = (Pi/4)*n + O(sqrt(n)).

%H V. Shevelev, <a href="http://arXiv.org/abs/0902.1046">Binary additive problems: theorems of Landau and Hardy-Littlewood type</a>, arXiv:0902.1046 [math.NT], 2009-2012.

%F a(n) = sum_{k=1..r(n)} r(2n-k^2+k)-C(r(n),2) where r(n) = A000194(n+1).

%t terms = 61; QP = QPochhammer;

%t s = QP[q^2]^4/QP[q]^2 + O[q]^terms;

%t Ceiling[CoefficientList[s, q]/2] // Accumulate (* _Jean-François Alcover_, Feb 17 2019 *)

%Y Cf. A052343, A000194.

%K nonn

%O 0,2

%A _Vladimir Shevelev_, Feb 06 2009