login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156225
Triangle read by rows:e(n,k)=Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; t(n,m)=(e[n + 1, m]*PartitionsQ[n] + e[n + 1, n - m]*(PartitionsQ[ n - m] + PartitionsQ[m])) - 2.
0
1, 1, 1, 1, 10, 1, 3, 42, 42, 3, 3, 128, 262, 128, 3, 5, 340, 1810, 1810, 340, 5, 7, 958, 8335, 19326, 8335, 958, 7, 9, 2468, 38635, 140569, 140569, 38635, 2468, 9, 11, 6022, 160686, 970572, 1561898, 970572, 160686, 6022, 11, 15, 15193, 669758, 6372686
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 12, 90, 524, 4310, 37926, 363362, 3836480, 48184504, 643393254,...}.
FORMULA
e(n,k)=Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}];
t(n,m)=(e[n + 1, m]*PartitionsQ[n] + e[n + 1, n - m]*(PartitionsQ[ n - m] + PartitionsQ[m])) - 2.
EXAMPLE
{1},
{1, 1},
{1, 10, 1},
{3, 42, 42, 3},
{3, 128, 262, 128, 3},
{5, 340, 1810, 1810, 340, 5},
{7, 958, 8335, 19326, 8335, 958, 7},
{9, 2468, 38635, 140569, 140569, 38635, 2468, 9},
{11, 6022, 160686, 970572, 1561898, 970572, 160686, 6022, 11},
{15, 15193, 669758, 6372686, 17034600, 17034600, 6372686, 669758, 15193, 15},
{19, 38682, 2594827, 37459294, 155809822, 251587966, 155809822, 37459294, 2594827, 38682, 19}
MATHEMATICA
Clear[e, k, t, n, m];
e[n_, k_] = Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}];
t[n_, m_] = (e[n + 1, m]*PartitionsQ[n] + e[n + 1, n - m]*( PartitionsQ[n - m] + PartitionsQ[m])) - 2;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A111525 A138261 A068126 * A284327 A322219 A010182
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Feb 06 2009
STATUS
approved