login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156222
Triangle T(n, k, q) = q^k*Q(k, n, q), with T(0, 0, q) = -2, where Q(k, n, q) = (1/q)*( -Q(k-1, n, q) + (1+q)*p(q, k-1)^n), Q(k, 0, q) = -q*(1+q)^n, p(q, n) = Product_{j=1..n} ( (1-q^k)/(1-q) ), and q = 2, read by rows.
3
-2, -6, 9, -18, 21, -15, -54, 57, -51, 375, -162, 165, -159, 1131, 4666413, -486, 489, -483, 3399, 98015025, 148865383434975, -1458, 1461, -1455, 10203, 2058376701, 46892624598373299, 83234757492356072395126701
OFFSET
0,1
LINKS
L. Carlitz, q-Bernoulli numbers and polynomials Duke Math. J. Volume 15, Number 4 (1948), pp. 987 - 1000.
FORMULA
T(n, k, q) = q^k*Q(k, n, q), with T(0, 0, q) = -2, where Q(k, n, q) = (1/q)*( -Q(k-1, n, q) + (1+q)*p(q, k-1)^n), Q(k, 0, q) = -q*(1+q)^n, p(q, n) = Product_{j=1..n} ( (1-q^k)/(1-q) ), and q = 2.
EXAMPLE
Triangle begins as:
-2;
-6, 9;
-18, 21, -15;
-54, 57, -51, 375;
-162, 165, -159, 1131, 4666413;
-486, 489, -483, 3399, 98015025, 148865383434975;
MATHEMATICA
Q[k_, n_, q_]:= Q[k, n, q]= If[n==0, 1, If[k==0, -q*(1+q)^n, (1/q)*( -Q[k-1, n, q] + (1+q)*(-1)^(n*(k-1))*QPochhammer[q, q, k-1]^n ) ]];
T[n_, k_, q_]:= If[n==0, -2, 2^k*Q[k, n, q]];
Table[T[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 01 2022 *)
PROG
(Sage)
from sage.combinat.q_analogues import q_pochhammer
@CachedFunction
def Q(k, n, q):
if (n==0): return 1
elif (k==0): return -q*(q+1)^n
else: return (1/q)*(-Q(k-1, n, q) + (1+q)*((-1)^(k-1)*q_pochhammer(k-1, q, q))^n)
def T(n, k, q): return -2 if (n==0) else q^k*Q(k, n, q)
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 01 2022
CROSSREFS
Cf. A156220.
Sequence in context: A072481 A032471 A358258 * A002886 A028724 A222048
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 06 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 01 2022
STATUS
approved