login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155904
Number of ways to write 2n-1 as p+2^x+5*2^y with p an odd prime and x,y positive integers.
6
0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 4, 3, 5, 6, 4, 5, 4, 4, 6, 5, 6, 7, 7, 5, 7, 11, 5, 10, 8, 5, 10, 7, 5, 8, 8, 7, 6, 10, 6, 8, 13, 9, 12, 10, 8, 14, 10, 7, 13, 12, 7, 10, 10, 9, 10, 17, 8, 11, 11, 9, 16, 12, 7, 13, 8, 10, 7, 8, 10, 11, 14, 5, 14, 14, 10, 17, 12, 7, 11, 12, 10, 12, 10, 12, 13, 17
OFFSET
1,9
COMMENTS
On Jan 21 2009, Zhi-Wei Sun conjectured that a(n)>0 for n=8,9,...; in other words, any odd integer m>=15 can be written as the sum of an odd prime, a positive power of 2 and five times a positive power of 2. Sun has verified this for odd integers m<10^8. As 5*2^y=2^y+2^{y+2}, the conjecture implies that each odd integer m>8 can be written as the sum of an odd prime and three positive powers of two. [It is known that there are infinitely many positive odd integers not of the form p+2^x+2^y (R. Crocker, 1971).] Sun also conjectured that there are infinitely many positive integers n with a(n)=a(n+1); here is the list of such positive integers n: 1, 2, 3, 4, 5, 6, 9, 10, 11, 19, 24, 36, 54, 60, 75, 90, 98, 101, 105, 135, 153, 173, ...
REFERENCES
R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
FORMULA
a(n) = |{<p,x,y>: p+2^x+5*2^y=2n-1 with p an odd prime and x,y positive integers}|.
EXAMPLE
For n=15 the a(15)=5 solutions are 29 = 17 + 2 + 5*2 = 11 + 2^3 + 5*2 = 3 + 2^4 + 5*2 = 7 + 2 + 5*2^2 = 5 + 2^2 + 5*2^2.
MATHEMATICA
PQ[x_]:=x>2&&PrimeQ[x] RN[n_]:=Sum[If[PQ[2n-1-5*2^x-2^y], 1, 0], {x, 1, Log[2, (2n-1)/5]}, {y, 1, Log[2, 2n-1-5*2^x]}] Do[Print[n, " ", RN[n]]; Continue, {n, 1, 50000}]
KEYWORD
nice,nonn
AUTHOR
Zhi-Wei Sun, Jan 30 2009
STATUS
approved