login
A155569
Intersection of A002479 inter A002481: N = a^2 + 2b^2 = c^2 + 6d^2 for some integers a,b,c,d.
1
0, 1, 4, 6, 9, 16, 22, 24, 25, 33, 36, 49, 54, 64, 73, 81, 88, 96, 97, 100, 118, 121, 132, 144, 150, 166, 169, 177, 193, 196, 198, 214, 216, 225, 241, 249, 256, 262, 289, 292, 294, 297, 313, 321, 324, 337, 352, 358, 361, 384, 388, 393, 400, 409, 433, 438, 441
OFFSET
1,3
COMMENTS
Contains A155709 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.
PROG
(PARI) isA155569(n, /* use optional 2nd arg to get other analogous sequences */c=[6, 2]) = { for(i=1, #c, for(b=0, sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
for( n=0, 500, isA155569(n) & print1(n", "))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved