Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 05 2024 16:38:57
%S 0,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,
%T 131072,262144,524288,1048576,2097152,4194304,8388608,16777216,
%U 33554432,67108864,134217728,268435456,536870912,1073741824,2147483648,4294967296,8589934592
%N a(n) = 2*A131577(n).
%C Essentially the same as A131577, A046055, A011782, A000079 and A034008.
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).
%F a(n) = A000079(n), n>0.
%F a(n) = (-1)^(n+1)*A084633(n+1).
%F a(n) + A155543(n) = 2^n+4^n = A063376(n) = 2*A007582(n) =2*A137173(2n+1).
%F Conjecture: a(n) = A090129(n+3)-A090129(n+2).
%F G.f.: 2*x/(1-2*x). - _R. J. Mathar_, Jul 23 2009
%t CoefficientList[ Series[ 2x/(1 - 2x), {x, 0, 32}], x] (* _Robert G. Wilson v_, Aug 08 2018 *)
%o (PARI) a(n)=if(n,2^n,0) \\ _Charles R Greathouse IV_, Aug 01 2016
%o (Python)
%o def A155559(n): return 1<<n if n else 0 # _Chai Wah Wu_, Sep 05 2024
%K nonn,easy
%O 0,2
%A _Paul Curtz_, Jan 24 2009
%E Edited by _R. J. Mathar_, Jul 23 2009
%E Extended by _Omar E. Pol_, Nov 19 2012