login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Matrix inverse of A155031.
5

%I #6 Mar 15 2021 21:30:33

%S 1,0,1,0,1,1,0,1,1,1,0,3,2,1,1,0,4,3,2,1,1,0,10,7,4,2,1,1,0,18,13,7,4,

%T 2,1,1,0,37,26,15,8,4,2,1,1,0,71,51,29,15,8,4,2,1,1,0,146,104,59,31,

%U 16,8,4,2,1,1,0,285,203,115,61,31,16,8,4,2,1,1,0,577,411,233,123,63,32,16,8,4,2,1,1

%N Matrix inverse of A155031.

%H G. C. Greubel, <a href="/A155033/b155033.txt">Rows n = 1..50 of the triangle, flattened</a>

%F Sum_{k=1..n} T(n,k) = A101173(n). - _G. C. Greubel_, Mar 15 2021

%e Table begins and row sums are:

%e 1 = 1;

%e 0, 1 = 1;

%e 0, 1, 1 = 2;

%e 0, 1, 1, 1 = 3;

%e 0, 3, 2, 1, 1 = 7;

%e 0, 4, 3, 2, 1, 1 = 11;

%e 0, 10, 7, 4, 2, 1, 1 = 25;

%e 0, 18, 13, 7, 4, 2, 1, 1 = 46;

%e 0, 37, 26, 15, 8, 4, 2, 1, 1 = 94;

%t A155031[n_, k_]:= If[k>n, 0, If[k==n, 1, If[k==1 || Mod[n, k]==0, 0, -1]]];

%t A155033:= Inverse[Table[A155031[n, k], {n,30}, {k,30}]];

%t Table[A155033[[n, k]], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 15 2021 *)

%Y Cf. A101173.

%K nonn,tabl

%O 1,12

%A _Mats Granvik_, Jan 19 2009