OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (1,1,-2,1,1,-1).
FORMULA
G.f.: 1/((x-1)^2*(x+1)^2*(x^2-x+1)). - Philippe Deléham, Mar 21 2014
a(n) = a(n-1) + a(n-2) - 2*a(n-3) + a(n-4) + a(n-5) - a(n-6), a(0) = 1, a(1) = 1, a(2) = 2, a(3) = 1, a(4) = 2, a(5) = 1. - Philippe Deléham, Mar 21 2014
Euler transform of length 6 sequence [ 1, 1, -1, 0, 0, 1]. - Michael Somos, Mar 21 2014
a(-6-n) = -a(n). - Michael Somos, Mar 21 2014
a(3*n) = A026741(n+1). a(3*n + 1) = A029578(n+2). a(3*n + 2) = A065423(n+3). - Michael Somos, Mar 21 2014
EXAMPLE
G.f. = 1 + x + 2*x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 4*x^8 + 2*x^9 + ...
MATHEMATICA
CoefficientList[Series[1/((x - 1)^2 (x + 1)^2 (x^2 - x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 22 2014 *)
LinearRecurrence[{1, 1, -2, 1, 1, -1}, {1, 1, 2, 1, 2, 1}, 90] (* Harvey P. Dale, Aug 26 2016 *)
PROG
(PARI) {a(n) = if( n<-5, -a(-6-n), if( n<0, 0, polcoeff( 1 / (1 - x - x^2 + 2*x^3 - x^4 - x^5 + x^6) + x * O(x^n), n)))}; /* Michael Somos, Mar 21 2014 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 18 2009
STATUS
approved