OFFSET
1,1
COMMENTS
Equivalently, products of three distinct primes of the form 3*k + 1. - Omar E. Pol, Feb 17 2018
LINKS
Felix Fröhlich, Table of n, a(n) for n = 1..10000
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios!, Number 1729.
EXAMPLE
The first three primes of the form 6*k + 1 are 7, 13 and 19, so a(1) = 7*13*19 = 1729. - Omar E. Pol, Feb 17 2018
MATHEMATICA
Module[{nn=40, prs}, prs=Select[6*Range[nn]+1, PrimeQ]; Take[Times@@@ Subsets[ prs, {3}]//Union, nn]] (* Harvey P. Dale, Feb 17 2018 *)
PROG
(PARI) fct(n, o=[1])=if(n>1, concat(apply(t->vector(t[2], i, t[1]), Vec(factor(n)~))), o) \\ after M. F. Hasler in A027746
is(n) = my(f=fct(n)); if(#f!=3 || f!=vecsort(f, , 8), return(0), for(k=1, #f, if((f[k]-1)/6!=ceil((f[k]-1)/6), return(0)))); 1 \\ Felix Fröhlich, Jul 07 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 18 2009
EXTENSIONS
a(5)-a(38) from Donovan Johnson, Jan 28 2009
STATUS
approved