login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154729
Products of three distinct primes of the form 6*k + 1.
7
1729, 2821, 3367, 3913, 4123, 4921, 5551, 5719, 6097, 6643, 7189, 7657, 8029, 8113, 8827, 8911, 9139, 9331, 9373, 9709, 9919, 10507, 10621, 11137, 11557, 12649, 12901, 13237, 13699, 13741, 14287, 14497, 14539, 14833, 14911, 15067, 15799, 15841
OFFSET
1,1
COMMENTS
a(1) = 1729 is the Hardy-Ramanujan number (see taxicab numbers in A001235, A011541).
Equivalently, products of three distinct primes of the form 3*k + 1. - Omar E. Pol, Feb 17 2018
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios!, Number 1729.
EXAMPLE
The first three primes of the form 6*k + 1 are 7, 13 and 19, so a(1) = 7*13*19 = 1729. - Omar E. Pol, Feb 17 2018
MATHEMATICA
Module[{nn=40, prs}, prs=Select[6*Range[nn]+1, PrimeQ]; Take[Times@@@ Subsets[ prs, {3}]//Union, nn]] (* Harvey P. Dale, Feb 17 2018 *)
PROG
(PARI) fct(n, o=[1])=if(n>1, concat(apply(t->vector(t[2], i, t[1]), Vec(factor(n)~))), o) \\ after M. F. Hasler in A027746
is(n) = my(f=fct(n)); if(#f!=3 || f!=vecsort(f, , 8), return(0), for(k=1, #f, if((f[k]-1)/6!=ceil((f[k]-1)/6), return(0)))); 1 \\ Felix Fröhlich, Jul 07 2021
CROSSREFS
Subsequence of A007304.
Sequence in context: A033181 A300949 A198775 * A083737 A182208 A340092
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 18 2009
EXTENSIONS
a(5)-a(38) from Donovan Johnson, Jan 28 2009
STATUS
approved