Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Oct 30 2022 17:15:43
%S 1,2,3,4,18,16,8,81,192,125,16,324,1536,2500,1296,32,1215,10240,31250,
%T 38880,16807,64,4374,61440,312500,699840,705894,262144,128,15309,
%U 344064,2734375,9797760,17294403,14680064,4782969
%N Triangle interpolating between the subsets of an n-set (A000079) and the trees on n labeled nodes (A000272) (read by rows).
%C Formatted as a square array:
%C 1st row is A000079(n). Subsets of an n-set.
%C 2nd row is A036290(n+1). Special (n+1)-subsets of a 3n-set partitioned into 3-blocks.
%C 2nd column is A066274(n+1). Endofunctions of [n] such that 1 is not a fixed point.
%C 1st column is A000272(n+2). Trees on n labeled nodes (Cayley's formula).
%C Alternating sum of rows in the triangle, Sum{k=0..n} (-1)^(n-k) * T(n,k)) = n! (A000142(n)).
%C This triangle gives the coefficient of Sidi's polynomials D_{n,2,n}(-z)/(-z), for n >= 0. See [Sidi 1980]. - _Wolfdieter Lang_, Oct 27 2022
%H G. C. Greubel, <a href="/A154715/b154715.txt">Rows n = 0..100 of triangle, flattened</a>
%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>
%H Avram Sidi, <a href="https://doi.org/10.1090/S0025-5718-1980-0572861-2">Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities</a>, Math. Comp., 35 (1980), 851-874. Eq. (4.10), p. 862.
%F T(n,k) = binomial(n,k)*(k+2)^n, where n >= 0, and k >= 0.
%F From _Wolfdieter Lang_, Oct 20 2022: (Start)
%F O.g.f. of column k: (-x)^k*(k + 2)^k/(1 - (k + 2)*x)^(k+1), for k >= 0. See |A075513| with offset 0.
%F E.g.f. of column k: exp((k+2)*x)*((k+2)*x)^k/k!, for k >= 0. (End)
%F E.g.f. of triangle (of row polynomials in y): exp(2*x)*substitute(z = x*y*exp(x), LambertW(-z)^2/(-z)*2*(1 + LambertW(-z)))). - _Wolfdieter Lang_, Oct 24 2022
%e Triangle begins as:
%e 1;
%e 2, 3;
%e 4, 18, 16;
%e 8, 81, 192, 125;
%e 16, 324, 1536, 2500, 1296;
%e 32, 1215, 10240, 31250, 38880, 16807;
%e 64, 4374, 61440, 312500, 699840, 705894, 262144;
%p T := proc(n,k) binomial(n,k)*(k+2)^n end;
%t Table[Binomial[n, k]*(k+2)^n, {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 09 2019 *)
%o (PARI) {T(n, k) = binomial(n,k)*(k+2)^n}; \\ _G. C. Greubel_, May 09 2019
%o (Magma) [[Binomial(n,k)*(k+2)^n: k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, May 09 2019
%o (Sage) [[binomial(n,k)*(k+2)^n for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, May 09 2019
%o (GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*(k+2)^n ))); # _G. C. Greubel_, May 09 2019
%Y Cf. A000079, A000272, A036290, A066274, A075513.
%K easy,nonn,tabl
%O 0,2
%A _Peter Luschny_, Jan 14 2009