login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154715
Triangle interpolating between the subsets of an n-set (A000079) and the trees on n labeled nodes (A000272) (read by rows).
3
1, 2, 3, 4, 18, 16, 8, 81, 192, 125, 16, 324, 1536, 2500, 1296, 32, 1215, 10240, 31250, 38880, 16807, 64, 4374, 61440, 312500, 699840, 705894, 262144, 128, 15309, 344064, 2734375, 9797760, 17294403, 14680064, 4782969
OFFSET
0,2
COMMENTS
Formatted as a square array:
1st row is A000079(n). Subsets of an n-set.
2nd row is A036290(n+1). Special (n+1)-subsets of a 3n-set partitioned into 3-blocks.
2nd column is A066274(n+1). Endofunctions of [n] such that 1 is not a fixed point.
1st column is A000272(n+2). Trees on n labeled nodes (Cayley's formula).
Alternating sum of rows in the triangle, Sum{k=0..n} (-1)^(n-k) * T(n,k)) = n! (A000142(n)).
This triangle gives the coefficient of Sidi's polynomials D_{n,2,n}(-z)/(-z), for n >= 0. See [Sidi 1980]. - Wolfdieter Lang, Oct 27 2022
FORMULA
T(n,k) = binomial(n,k)*(k+2)^n, where n >= 0, and k >= 0.
From Wolfdieter Lang, Oct 20 2022: (Start)
O.g.f. of column k: (-x)^k*(k + 2)^k/(1 - (k + 2)*x)^(k+1), for k >= 0. See |A075513| with offset 0.
E.g.f. of column k: exp((k+2)*x)*((k+2)*x)^k/k!, for k >= 0. (End)
E.g.f. of triangle (of row polynomials in y): exp(2*x)*substitute(z = x*y*exp(x), LambertW(-z)^2/(-z)*2*(1 + LambertW(-z)))). - Wolfdieter Lang, Oct 24 2022
EXAMPLE
Triangle begins as:
1;
2, 3;
4, 18, 16;
8, 81, 192, 125;
16, 324, 1536, 2500, 1296;
32, 1215, 10240, 31250, 38880, 16807;
64, 4374, 61440, 312500, 699840, 705894, 262144;
MAPLE
T := proc(n, k) binomial(n, k)*(k+2)^n end;
MATHEMATICA
Table[Binomial[n, k]*(k+2)^n, {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 09 2019 *)
PROG
(PARI) {T(n, k) = binomial(n, k)*(k+2)^n}; \\ G. C. Greubel, May 09 2019
(Magma) [[Binomial(n, k)*(k+2)^n: k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 09 2019
(Sage) [[binomial(n, k)*(k+2)^n for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 09 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*(k+2)^n ))); # G. C. Greubel, May 09 2019
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Jan 14 2009
STATUS
approved