login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154633
a(n) = (4*n+1)*(4*n+3)*(4*n+5)*(4*n+7).
3
105, 3465, 19305, 62985, 156009, 326025, 606825, 1038345, 1666665, 2544009, 3728745, 5285385, 7284585, 9803145, 12924009, 16736265, 21335145, 26822025, 33304425, 40896009, 49716585, 59892105, 71554665, 84842505, 99900009, 116877705, 135932265, 157226505, 180929385
OFFSET
0,1
COMMENTS
3 divides a(n).
For n=5k, 5k+1, 5k+2 and 5k+3, a(n) is a multiple of 5. For n=5k+4, a(n)-9 is a multiple of 100. - Michel Marcus, Aug 21 2013
FORMULA
Sum_{n>=0} 1/a(n) = (3*Pi - 8)/144.
G.f.: 3*(35 + 980*x + 1010*x^2 + 20*x^3 + 3*x^4)/(1-x)^5.
a(n) = (4*n+1)*(4*n+3)*(4*n+5)*(4*n+7).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=0} (-1)^n/a(n) = 1/18 - Pi/(48*sqrt(2)). - Amiram Eldar, Feb 27 2022
MATHEMATICA
a[n_] := (4*n + 1)*(4*n + 3)*(4*n + 5)*(4*n + 7); Array[a, 40, 0] (* Amiram Eldar, Feb 27 2022 *)
PROG
(PARI) a(n) = (4*n+1)*(4*n+3)*(4*n+5)*(4*n+7); \\ Michel Marcus, Aug 21 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jaume Oliver Lafont, Jan 13 2009
STATUS
approved