login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154571
Numbers that are congruent to {0, 3, 4, 5, 7, 8} mod 12.
2
0, 3, 4, 5, 7, 8, 12, 15, 16, 17, 19, 20, 24, 27, 28, 29, 31, 32, 36, 39, 40, 41, 43, 44, 48, 51, 52, 53, 55, 56, 60, 63, 64, 65, 67, 68, 72, 75, 76, 77, 79, 80, 84, 87, 88, 89, 91, 92, 96, 99, 100, 101, 103, 104, 108, 111, 112, 113, 115, 116, 120, 123, 124
OFFSET
1,2
FORMULA
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(4*x^5 + x^4 + 2*x^3 + x^2 + x + 3)/(x^7 - x^6 - x + 1). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (12*n - 15 - cos(n*Pi) - 5*cos(n*Pi/3) - sqrt(3)*(2*cos((1-4*n)*Pi/6) - 3*sin(n*Pi/3)))/6.
a(6k) = 12k-4, a(6k-1) = 12k-5, a(6k-2) = 12k-7, a(6k-3) = 12k-8, a(6k-4) = 12k-9, a(6k-5) = 12k-12. (End)
Sum_{n>=2} (-1)^n/a(n) = (15-8*sqrt(3))*Pi/72 + log(2)/4. - Amiram Eldar, Dec 31 2021
MAPLE
A154571:=n->(12*n-15-cos(n*Pi)-5*cos(n*Pi/3)-sqrt(3)*(2*cos((1-4*n)*Pi/6)-3*sin(n*Pi/3)))/6: seq(A154571(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 3, 4, 5, 7, 8, 12}, 50] (* G. C. Greubel, May 29 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 12 in [0, 3, 4, 5, 7, 8]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
Cf. A113829.
Sequence in context: A242965 A266796 A318603 * A174269 A112882 A180152
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Jan 12 2009
STATUS
approved