login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154254 a(n) = 9n^2 - 8n + 2. 4
2, 3, 22, 59, 114, 187, 278, 387, 514, 659, 822, 1003, 1202, 1419, 1654, 1907, 2178, 2467, 2774, 3099, 3442, 3803, 4182, 4579, 4994, 5427, 5878, 6347, 6834, 7339, 7862, 8403, 8962, 9539, 10134, 10747, 11378, 12027, 12694, 13379, 14082, 14803, 15542 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The identity (81*n^2 + 90*n + 26)^2 - (9*n^2 + 10*n + 3)*(27*n + 15)^2 = 1 can be written as A154277(n+1)^2 - a(n+1)*A154267(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

From Vincenzo Librandi, Jan 30 2012: (Start)

G.f.: (2 - 3*x + 19*x^2)/(1-x)^3.

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). (End)

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {2, 3, 22}, 50] (* Vincenzo Librandi, Jan 30 2012 *)

PROG

(PARI) a(n)=9*n^2-8*n+2 \\ Charles R Greathouse IV, Dec 27 2011

(MAGMA) I:=[2, 3, 22]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012

CROSSREFS

Cf. A154267, A154277.

Sequence in context: A298470 A083178 A268866 * A264696 A166122 A114996

Adjacent sequences:  A154251 A154252 A154253 * A154255 A154256 A154257

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jan 05 2009

EXTENSIONS

7662 replaced by 7862 - R. J. Mathar, Jan 07 2009

Edited by Charles R Greathouse IV, Jul 25 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 05:08 EDT 2020. Contains 334712 sequences. (Running on oeis4.)